Parallel Two-Sided Matrix Reduction to Band Bidiagonal Form on Multicore Architectures

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Band Two-Sided Matrix Bidiagonalization for Multicore Architectures

The objective of this paper is to extend, in the context of multicore architectures, the concepts of algorithms-by-tiles [Buttari et al., 2007] for Cholesky, LU, QR factorizations to the family of twosided factorizations. In particular, the bidiagonal reduction of a general, dense matrix is very often used as a pre-processing step for calculating the singular value decomposition. Furthermore, i...

متن کامل

Scheduling two-sided transformations using tile algorithms on multicore architectures

The objective of this paper is to describe, in the context of multicore architectures, three different scheduler implementations for the two-sided linear algebra transformations, in particular the Hessenberg and Bidiagonal reductions which are the first steps for the standard eigenvalue problems and the singular value decompositions respectively. State-of-the-art dense linear algebra softwares,...

متن کامل

Enhancing Parallelism of Tile Bidiagonal Transformation on Multicore Architectures Using Tree Reduction

Abstract. The objective of this paper is to enhance the parallelism of the tile bidiagonal transformation using tree reduction on multicore architectures. First introduced by Ltaief et. al [LAPACK Working Note #247, 2011], the bidiagonal transformation using tile algorithms with a two-stage approach has shown very promising results on square matrices. However, for tall and skinny matrices, the ...

متن کامل

Parallel MLEM on Multicore Architectures

The efficient use of multicore architectures for sparse matrixvector multiplication (SpMV) is currently an open challenge. One algorithm which makes use of SpMV is the maximum likelihood expectation maximization (MLEM) algorithm. When using MLEM for positron emission tomography (PET) image reconstruction, one requires a particularly large matrix. We present a new storage scheme for this type of...

متن کامل

Two-Sided Reduction to Compact Band Forms with Look-Ahead

We address the reduction to compact band forms, via unitary similarity transformations, for the solution of symmetric eigenvalue problems and the computation of the singular value decomposition (SVD). Concretely, in the first case we revisit the reduction to symmetric band form while, for the second case, we propose a similar alternative, which transforms the original matrix to (unsymmetric) ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Parallel and Distributed Systems

سال: 2010

ISSN: 1045-9219

DOI: 10.1109/tpds.2009.79